Combinatorial synthesis and analysis have become commonly used tools in bioorganic chemistry (1–11). Although the combinatorial (or multiple sample) approach to the discovery of inorganic materials has existed for more than two decades (12), new materials (13, 14) and sensors (15) only recently have been discovered by this advanced Edsionian technique. There are several examples of combinatorial searches that have confirmed the properties of known materials (16, 17) and catalysts (18). There are, however, no previous reports of superior catalysts that have been identified by combinatorial chemistry. Combinatorial searches for catalysts are often limited by synthesis but by the lack of methods that can simultaneously screen many compositions. Recently, significant progress has been made in the thermographic screening of catalysts (18, 19). We describe here a general combinatorial screening method for electrode materials and its application to the problem of anode catalysis in direct methanol fuel cells (DMFCs). By screening combinations of five elements (Pt, Ru, Os, Ir, and Rh), we found several good catalysts in unexpected regions of composition space and identified a quaternary catalyst with significantly higher activity than the best previously known catalyst (a binary Pt-Ru alloy).

Because methanol is a renewable liquid fuel, DMFCs present some distinct potential advantages over combustion engines and hydrogen fuel cells for transportation and remote power applications. They are silent and nonpolluting, and they use an easily distributed, high-energy-density fuel (20). One of the factors that limits their development and use is that known anode and cathode electrocatalysts produce useful current densities only at high overpotentials. The anode catalyst is particularly problematic, because it must perform a kinetically demanding reaction, the six-electron (6−) oxidation of methanol

$$\text{CH}_3\text{OH} + H_2O \rightarrow \text{CO}_2 + 6H^+ + 6e^-$$

Despite nearly three decades of research and optimization, the best known anode electrocatalysts are a binary Pt-Ru alloy (21) and a recently discovered Pt-Ru-Os ternary (22). The performance of these alloy catalysts is significantly enhanced relative to Pt alone. The bimetallic alloy is thought to work by a bifunctional or ligand effect mechanism, in which Ru activates water, and Pt activates the methanol C-H bond and also binds the CO intermediate in the reaction (23, 24). Although binary alloys of Pt with many other oxophilic elements have been studied, none is more active than high-surface-area Pt-Ru. No predictive model for investigating ternary or quaternary combinations has emerged and, in fact, little is known about the phase equilibria of ternary and quaternary Pt alloys.

Although electrocatalysts are typically tested by measuring current as a function of potential, this approach becomes increasingly unwieldy as the number of samples increases. Successful uses of the combinatorial method—for example, massively parallel screening for biochemical affinity (1–9), organic host-guest interactions (10, 11), and inorganic phosphorescence (13)—often use optical (absorption or emission) detection. Optical detection methods are fast regardless of the complexity of the array, are simple to implement, and allow one to ignore the uninteresting majority of phase space. This method can be adapted to electrochemical screening by recognizing that all half-cell reactions (for example, reaction 1) involve an imbalance of ions. Therefore, a fluorescent indicator that detects the presence or absence of ions (H+ in the case of the DMFC anode) in the diffusion layer images the activity of the array.

This idea is illustrated in a small ternary Pt-Os-Rh array, prepared by manually pipetting appropriate metal salts and aqueous NaBH4 onto Toray carbon paper (Fig. 1). The carbon substrate is electronically conducting but not catalytic for the oxidation of methanol. The array electrode serves as the working electrode in a single-compartment,
three-electrode cell and is stepped progressively into the potential region where methanol is oxidized. The electrolyte contains a fluorescent indicator, which is luminescent in its acid form but not in the base. Quinine anol is oxidized. The electrolyte contains a speciously into the potential region where methylation occurs. Figure 2, the resulting “five-pick-four” array (not shown) contains 645 different compositions, each with the same number of moles of metal per spot.

A common approach to generating large combinatorial arrays is by automation (26, 27). By customizing a commercially available inkjet printer, we printed metal salt “inks” into quaternary and five-pick-four patterns. We adjusted aqueous inks prepared from $\text{H}_2\text{PtCl}_6\cdot\text{H}_2\text{O}$, $\text{RuCl}_3\cdot\text{H}_2\text{O}$, OsCl_3, K_2IrCl_6, and $\text{RhCl}_3\cdot\text{H}_2\text{O}$ to the appropriate viscosity by adding glycerol. A typical quaternary array, prepared by inkjet printing and subsequent borohydride reduction, is shown (Fig. 2) (28, 29). After the arrays were dried, washed, and contacted electrically, they were screened for activity in methanol-indicator solutions (30). This procedure identified several active regions. Because the resolution of the large arrays was not sufficient to pinpoint the most active composition, active areas were magnified in “zoom” arrays printed from end-member ink mixtures that bounded each region. A typical zoom array had about three times the resolution of a large survey scan along any binary direction and therefore encompassed about 4% of the whole composition space.

Bulk samples of the most active compositions were characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy, and rotating disk voltammetry, and were then tested as anode catalysts in DMFCs. A comparison of steady-state DMFC power curves obtained with the best quaternary catalyst deduced from the combinatorial analysis $\text{Pt}(44)/\text{Ru}(41)/\text{Os}(10)/\text{Ir}(5)$ and the best commercially available $\text{Pt}(50)/\text{Ru}(50)$ is shown (Fig. 3). The current density with the new quaternary catalyst is about 40% higher at 400 mV and more

Fig. 1. Pt-Rh-Os ternary array in 6 M aqueous methanol (pH 6) quinine indicator. (Left) Image in white light. (Center) Fluorescence image at low overpotential, identifying the most active region of composition space. (Right) Fluorescence image at high overpotential, where methanol oxidation occurs at every spot in the array.

Fig. 2. (Top) Unfolding of a quaternary phase diagram and mapping into two dimensions. (Lower left) At a resolution of 10 different compositions along each binary edge, a quaternary map contains 220 unique spots, with composition varying smoothly across the array. Redundant binary lines (dashed lines in top drawing) are eliminated in the map. The three nested shells in the phase diagram are marked 1, 2, and 3 in the map. (Lower right) Borohydride-reduced, inkjet-printed array of electrocatalysts on Toray carbon paper.

Fig. 3. Comparison of steady-state current-voltage data for direct methanol fuel cells made from $\text{Pt}(44)/\text{Ru}(41)/\text{Os}(10)/\text{Ir}(5)$ (C3) and Johnson–Matthey $\text{Pt}(50)/\text{Ru}(50)$ (C4) anode electrocatalysts. Anode: 4.0 mg/cm2, 12.5 ml/min, 0.5 M methanol, 0 pounds per square inch gauge (psig); cathode: Pt at 4.0 mg/cm2, 400 standard cubic centimeters per minute of dry air at 10 psig; cell: 60°C, Nafion 117 polymer electrolyte membrane. Cell potentials are compensated for series resistance.
than double that of Pt-Ru under short circuit conditions. This difference is especially striking when one considers that the Pt-Ru, prepared by a proprietary method, is an optimized, high-surface-area catalyst [measured Brunauer–Emmett–Teller (BET) surface area of 65 m²/g]. The quaternary catalyst, made by borohydride reduction, is not optimized and has roughly half (31 m²/g) the surface area. This difference indicates that the intrinsic activity of Pt-Ru-Os-Ir per surface atom is several times greater than that of Pt-Ru. Why the addition of relatively small amounts of Os and Ir causes such a substantial increase in activity is an interesting question, to which we currently have no answer.

This study illustrates some of the strengths of the combinatorial method as applied to catalysis. It is possible to search a fairly large phase space rapidly and exhaustively. Although the best catalyst is close in composition to previously known binaries and ternaries, it is markedly superior in performance. Although this catalyst might have been looked for by extrapolation of the binary and ternary results, a serial search of this composition space would be very time-consuming. Further, the combinatorial approach identifies active compositions in regions bounded by inactive binaries—that is, where a targeted, serial search would not normally be done. Finally, we note that the optical screening method developed for anode catalysts might be applied to various electrochemical materials problems (electrocatalysis, battery materials, corrosion) by using the appropriate fluorescent chemosensor molecules.

REFERENCES AND NOTES

3. R. A. Houghton et al., ibid., p. 84.
17. X.-D. Xiang et al., ibid. 268, 1738 (1995).

The Re-Os isotopic system provides constraints on the role of crustal recycling into Earth’s deep interior (1). Both elements exhibit siderophile behavior in metal-silicate systems, yet in mantle and crustal melting environments, Re is thought to be strongly incompatible (partitioned into magma) and Os strongly compatible (partitioned into the residue) (2). Several aspects of the geochemical behavior of Re during mantle melting have remained uncertain. First, oceanic island basalts (OIBs) and some picrites have lower Re contents than mid-ocean ridge basalts, while oceanic island basalts and recycled back into the mantle. Re-Os isotopic systems at depths >100 km in the mantle have been uncertain. Several observations suggest that garnet may play a role in fractionating Re from Os. Garnet separates from a garnet pyroxenite have almost 10 times more Re than the bulk rock (6). Data from oceanic basalts show that Re and Yb behave similarly during mantle melting (3); and because Yb is compatible in garnet (7), a similar behavior has been hypothesized for Re (3). Re-Al2O3 systematics in orogenic lherzolites also suggest a link between Re and garnet (8). In order to better understand