Anionic Homopolymers Efficiently Target Zerovalent Iron Particles to Hydrophobic Contaminants in Sand Columns

ELIZABETH J. BISHOP, DANIEL E. FOWLER, JOANNA M. SKLUZACEK, ELIZABETH SEIBEL, AND THOMAS E. MALLOUK*
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

Received May 23, 2010. Revised manuscript received October 23, 2010. Accepted October 27, 2010.

The transport of microscale carbonyl iron powder suspensions modified with anionic homopolymers was studied in water-saturated sand columns containing well-dispersed hydrophobic sand grains. Sand grains functionalized with hexadecyltrimethoxysilane were coated with a eutectic mixture of dichlorobenzenes that was solid at −10 °C and was mixed by grinding with unmodified sand grains. The dichlorobenzene coating liquefied at the temperature of the transport experiments, and the coated grains were thus mimetic of uniform droplets of dense nonaqueous phase liquid (DNAPL) contaminants. By comparing iron particle transport in uncontaminated columns with those that contained a small fraction of DNAPL-coated sand grains, sticking coefficients for both types of grains could be estimated. The anionic polyelectrolytes tested (polyacrylate, carboxymethylcellulose, alginate, and metasilicate) all gave low particle sticking coefficients (0.004−0.05) to unmodified sand, as expected from earlier studies. However, iron particles modified with the two moderately hydrophobic polymers (carboxymethylcellulose and polyacrylate) had 30-fold higher sticking coefficients (0.40 and 0.13, respectively) to the model DNAPL surface than they did to the sand surface. In contrast, no significant difference between the two kinds of collector grains was found with the more polar polymers (metasilicate and alginate). The trend in sticking coefficients was correlated with the surface energy of the polymer-modified iron surface as measured by the static contact angle method. From these data one can conclude that the hydrophobicity of the polymer dispersant is a key factor in targeting zerovalent iron to DNAPL source zones in soil and groundwater.

Introduction

Nanoscale zerovalent iron is being increasingly studied and tested for the in situ remediation of contaminated soil and groundwater sites that contain dense nonaqueous phase liquids (DNAPLs) (1−7). DNAPLs exist in the subsurface environment in a variety of forms, including hydrophobic liquid droplets (or “ganglia”) that equilibrate very slowly with the groundwater because of low solubility (8, 9). Because the volume of soil and groundwater that can be contaminated by relatively small amounts of DNAPLs is very large, laboratory and field studies of in situ remediation typically involve a very large stoichiometric excess of iron, and this increases the cost and environmental impact of the remediation (10−18). The efficient delivery of zerovalent iron particles - as well as other kinds of in situ remediants, such as sorbents and oxidizing agents - to dispersed contamination sources in soil and groundwater is thus an important practical problem.

Iron nanoparticles, which are more reactive than iron filings or microparticles, are efficiently filtered in saturated granular media such as soils. In order to improve the transport of nanoiron, particle “delivery vehicles”, including microemulsions (19, 20), adsorbed anionic synthetic polymers and biopolymers (21−31), anionic carbons (21, 32), silica (33), and multifunctional triblock copolymers (28, 29, 34) have been studied. It is now well established that anionic polymers impede particle aggregation and dramatically lower the probability that collisions between the particles and soil surfaces result in adhesion (30, 35). This sticking coefficient (or probability) (a) has been calculated using classical friction theory for various model soils from column transport studies.

Lowry and co-workers introduced the concept of targeting nanoparticles to contaminants in their studies of iron nanoparticles with an adsorbed triblock copolymer layer (28). They found that the particles localized at the interface between liquid trichloroethylene and water and that the oil-in-water emulsions so formed were stable over periods of months. They attributed this behavior to the triblock copolymer’s ability to rearrange in different environments, specifically to expose the hydrophobic polystyrene block when in contact with DNAPLs. Similar behavior has more recently been found by Zhan et al., who studied carbon microspheres containing nanoiron and stabilized by carboxymethylcellulose (36). While these results are promising, the partitioning experiment does not quantify targeting in the sense of particle transport behavior.

Both triblock copolymers and the borohydride reagent used by Zhan et al. to prepare carbon/nanoiron microspheres are too expensive to use in the quantities needed for full-scale environmental remediation projects, which can involve thousands of kilograms of iron. For these applications, natural or synthetic homopolymers or biopolymers are typically used in conjunction with iron nanoparticles. It is thus relevant to ask whether these simpler materials can target contaminants effectively. Studies of capillary interactions, carried out in a very different context, have shown that colloidal particles tend to localize at liquid−liquid interfaces when the energy of the two contacting liquids (γL1,L2) is large compared to the difference between the energies of the two particle-liquid interfaces (γPL1−γPL2) (37). This principle has been used to spontaneously assemble ternary systems of oil, water, and particles into colloidosomes, which contain a densely packed layer of particles at the liquid−liquid interface (38). These observations in other colloidal systems suggest that iron particle targeting to liquid−liquid (DNAPL-water) or liquid−solid (DNAPL-soil) interfaces could be quite effective with simple homopolymers. In the case of a high energy liquid−liquid interface, such as DNAPLs and water, one should expect particles with a broad range of moderately hydrophobic polymer coatings to adhere spontaneously to the interface.

In this paper, we test this hypothesis by using micrometer-size, spherical iron particles, coated with hydrophilic and moderately hydrophobic anionic polymers. Microiron was

10.1021/es1017398 © 2010 American Chemical Society Published on Web 11/09/2010

Environ. Sci. Technol. 2010, 44, 9069−9074

No figure or table
chosen for this study because its transport properties in water-saturated sand columns have been well studied and modeled quantitatively (30). In our earlier studies with these particles, we examined the distribution of particle sizes before and after elution through sand columns. These studies were carried out at low particle number density (≈4 × 10⁶/cm³) and in the presence of anionic polyelectrolytes in order to inhibit aggregation. From the profiles of retained iron in the columns, we were able to quantify the deviation of the filtration data from classical filtration theory (CFT) and to obtain average sticking coefficients for the iron microparticles (30). Here, we extend this method in order to estimate the sticking coefficients of iron microparticles at unmodified and chlorobenzene-modified sand grains. The DNAPL sticking coefficients of particles modified with different anionic homopolymers are then correlated with their surface energies, measured by the static contact angle method. This correlation is useful for selecting anionic polymers that target particles to DNAPL contaminants, i.e., polymers that impart a low sticking coefficient for polar, unmodified sand grains but a high sticking coefficient for DNAPLs.

Results and Discussion
Preparation of DNAPL-Loaded Sand Columns. The approach taken here to quantifying the targeting of iron particles to contaminants involves analysis of the elution behavior of micrometer-size iron particles in water-saturated sand columns that contain a small fraction of DNAPL-coated grains. While the transport of bacteria in DNAPL-contaminated columns has been studied before, it was not possible to obtain quantitative sticking coefficients because inhomogeneously distributed contaminant droplets modified the pattern of flow in the columns (39). Quantitative filtration models generally assume a single collector size and a uniform pore velocity. Thus, it was important to devise a method for dispersing hydrophobic DNAPL-coated sand grains in water-saturated sand columns in such a way that the hydrophobic grains would not coalesce into larger aggregates.

This problem was solved using the process flow sketched in Scheme 1. In order to maintain a single collector diameter, 160 ± 45 µm diameter sand particles were modified with a hydrophobic silane monolayer (hexadeccyltrimethoxysilane) to which a thin (~8 µm) coating of dichlorobenzene containing a porphyrin dye was applied. The modified grains were then dispersed at 5–10% loading in unmodified sand. By using a mixture of dichlorobenzene isomers that was solid at the mixing temperature (~10 °C), it was possible to prevent agglomeration of the dichlorobenzene-coated grains. Figure 1 shows an optical microscope image of a 5% sand grain mixture in both bright field and fluorescence modes. The DNAPL-modified sand grain that is brighter than the surrounding particles in the fluorescence image is surrounded by unmodified sand grains.

Measurements of Iron Microparticle Elution and Retention. Columns were loaded with the physical mixture of sand and DNAPL-coated hydrophobic sand, in which the DNAPL coating was kept frozen to prevent particle aggregation. These sand-packed columns were allowed to warm to ambient temperature (where the dichlorobenzene mixture on the dispersed hydrophobic grains liquefied) and were then rinsed with water before loading with polymer-coated CIP iron. The combined amount of dichlorobenzene eluted in the processes of packing/rinsing the column and eluting polymer-coated CIP, as determined by UV-visible spectroscopy, was about 4% of the total, meaning that 96% remained on the hydrophobic grains.

BASF-HQ carbonyl iron powder, which was used in the column transport experiments, consists of spherical particles with a log-normal distribution of diameters (dₚ) peaked at 0.9 µm. The particle size distribution, composition, and surface chemical properties of this material have been described in a previous paper (30). Figure 2 shows profiles of iron retained by sand and contaminated sand columns when these microparticles were modified with carboxymethylcellulose (CMC) and eluted with water. Except for the fact that the iron is more strongly retained in the lower part of the contaminated column, the elution profiles are similar in shape. Similar profiles were observed previously for microiron coated with polyacrylate (PAA) (30), where it was found that the largest particles in the distribution were selectively filtered near the top of the column.

Below about 7 cm depth in the columns, the iron retention profiles in Figure 2 are close to the prediction of the Tufenkji–Elimelech model (TE) for particle filtration in the clean-bed limit (40). The TE model, like earlier models (41), is based on the assumption of a single collector size and uniform pore velocity. The Tufenkji–Elimelech model is useful for selecting anionic polymers that target particles to DNAPL contaminants, i.e., polymers that impart a low sticking coefficient for polar, unmodified sand grains but a high sticking coefficient for DNAPLs.
on classical filtration theory (CFT) in the sense that the collection of mobile particles by sand grains is a first-order kinetic process. CFT predicts that the profile of retained iron should decrease approximately exponentially with depth in the column. The deviation from CFT observed at the top of the columns can be understood as the selective capture of larger particles, as explained in a subsequent paper by Tufenji and Elimelech (42). This behavior has now been observed in a number of filtration experiments that involve a distribution of particle sizes of the mobile particles (30–45).

Because sticking coefficients calculated from elution data using the TE model provide reasonable fits to the particle retention profiles in the lower parts of these columns, the model can be used to compare sticking coefficients for the contaminated and uncontaminated sand grains. It is clear from Figure 2 that a single sticking coefficient does not describe the behavior of the entire distribution of iron particle sizes. Nevertheless, the ratio of sticking coefficients is a relatively model-independent quantity and the derived values change by only a few percent when the Rajagopalan-Tien (RT) model (41) is used in place of the TE model.

In the TE and RT models, which are first-order kinetic models for particle filtration, the number density \(N \) of particles in the mobile phase at the end of a column at length \(L \) is given by eq 1. Here \(N_0 \) is the number density of particles in the unfiltered suspension and the product

\[
\ln \left(\frac{N}{N_0} \right) = -\alpha \lambda L \tag{1}
\]

\[
\lambda = \frac{3}{2d_c} (1 - \theta) \eta \tag{2}
\]

\[
\eta = \eta_D + \eta_I + \eta_G \tag{3}
\]

\((\alpha \lambda)^{-1}\) is a filtration length (46). In the clean bed limit, the parameter \(\lambda \) depends on the column porosity \(\theta \), the collector diameter \(d_c \), and the collection efficiency \(\eta \), according to eq 2. \(\eta \) is in turn the sum (eq 3) of contributions from diffusion \(\eta_D \), interception \(\eta_I \), and sedimentation \(\eta_G \) capture mechanisms, which depend primarily on the particle and collector diameters, column porosity, particle specific gravity, and pore velocity. An additional dependence of \(\eta \) on the Hamaker constant of the particles and collectors is taken into account in the TE model (40). For the purposes of this analysis, a single Hamaker constant \((1 \times 10^{-20} \text{ J})\) was used for both the modified and unmodified sand grains and variation by a factor of 2 had little effect (~10%) on the derived values of \(\alpha \). \(\lambda \) values were calculated over the range of iron particle sizes in the distribution, and their contributions were added to calculate the mass fraction of eluted iron. Values of \(\alpha \) were obtained by constraining the calculation to match the experimentally determined mass fraction of eluted iron (30).

For a mixed column containing two collectors with the same \(d_c \), first-order models predict that the collection rates are additive, and the rate constants are proportional to \(\alpha \) for the two kinds of collectors. In this case eq 1 can be replaced by eq 4 in which \(\gamma \) is the fraction of the modified grains, \(\alpha_{\text{sand}} \) is the sticking coefficient for the unmodified sand grains.

TABLE 1. Mass Fraction of Iron Particles Eluted and Calculated Sticking Coefficients

<table>
<thead>
<tr>
<th>polymer</th>
<th>sand column</th>
<th>mixed column</th>
<th>(\alpha_{\text{sand}})</th>
<th>(\alpha_{\text{eff}})</th>
<th>(\alpha_{\text{DNAPL}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAA</td>
<td>0.91 ± 0.03</td>
<td>0.80 ± 0.01</td>
<td>0.0043</td>
<td>0.011</td>
<td>0.13</td>
</tr>
<tr>
<td>CMC</td>
<td>0.78 ± 0.01</td>
<td>0.56 ± 0.03</td>
<td>0.012</td>
<td>0.032</td>
<td>0.40</td>
</tr>
<tr>
<td>SMS</td>
<td>0.56 ± 0.02</td>
<td>0.58 ± 0.02</td>
<td>0.032</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>ALG</td>
<td>0.46 ± 0.02</td>
<td>0.48 ± 0.02</td>
<td>0.045</td>
<td>0.042</td>
<td></td>
</tr>
</tbody>
</table>

\(^a \) Error bars indicate the standard deviation of the mean, based on replicate measurements. Mixed columns contained 5% modified sand grains. PAA = sodium poly(acrylate), CMC = sodium carboxymethylcellulose, SMS = sodium metasilicate, ALG = sodium alginate.
Contact Angle Measurements of Iron Particle Surface Energy. Lowry and co-workers have shown that at the concentrations used in the elution experiments described above, CMC and other anionic polymers have an adsorbed strongly to the iron surface at saturation loadings in the 2–3 × 10⁻³ monomer unit/cm² range, suggesting a looped monolayer arrangement of polymer chains (47). At this loading, the polymer can be expected to strongly influence the surface energy (γ) of particles to which it is adsorbed. The surface energies of iron microparticles with adsorbed polymer layers were estimated from contact angle data. Static contact angles were measured with three polar fluids - water, ethylene glycol, and formamide - and are shown in Table 2. Attempts to measure contact angles with less polar fluids were unsuccessful because those solvents swelled or dissolved the adhesive that held the iron particles to the glass slides on which the contact angles were measured.

The surface tension of each iron surface was calculated using eq 5 (48):

\[
\gamma_L(1 + \cos \theta_{SL}) = 2(\sqrt{\gamma_{SL}^p} + \sqrt{\gamma_{SL}^b} + \sqrt{\gamma_{SL}^h})
\]

Here γₐ is the liquid surface tension; γₐ, γₐ, and γₐ are the liquid surface tension components due to dispersion, polar, and hydrogen-bonding forces, respectively; θSL is the contact angle of the liquid with the solid surface; and γₐ, γₐ, and γₐ are the solid surface tension components due to dispersion, polar, and hydrogen-bonding forces, respectively. It is assumed that the surface tension of the solid is approximated well by γSV in the presence of the vapor (in this case air) used in the measurement. Contact angles were measured for three different liquids, and three equations are generated

\[
\gamma_{L,\text{water}}(1 + \cos \theta_{SL,\text{water}}) = 2(\sqrt{\gamma_{SL,\text{water}}^p} + \sqrt{\gamma_{SL,\text{water}}^b} + \sqrt{\gamma_{SL,\text{water}}^h})
\]

\[
\gamma_{L,\text{glycol}}(1 + \cos \theta_{SL,\text{glycol}}) = 2(\sqrt{\gamma_{SL,\text{glycol}}^p} + \sqrt{\gamma_{SL,\text{glycol}}^b} + \sqrt{\gamma_{SL,\text{glycol}}^h})
\]

\[
\gamma_{L,\text{form}}(1 + \cos \theta_{SL,\text{form}}) = 2(\sqrt{\gamma_{SL,\text{form}}^p} + \sqrt{\gamma_{SL,\text{form}}^b} + \sqrt{\gamma_{SL,\text{form}}^h})
\]

For each polymer-coated iron surface, contact angles of the three liquids were measured, providing the θ terms on the left side of eqs 6–8 for the sample. The total surface tension and component values have been previously reported for each of the three liquids, and thus each of the γ values is known (49). This gives for each surface three equations in three unknowns (\(\gamma_{SL}^p\), \(\gamma_{SL}^h\), and \(\gamma_{SL}^b\)), which can be solved to calculate the solid surface tension components of the polymer-coated iron particles. The values obtained were squared to give γₐ, γₐ, and γₐ, respectively. These components were then summed to obtain the total solid powder surface tension γ for a given iron particle surface (Table 2).
In the case of the polar polymers (SMS and ALG), contact angles were too low to measure with polar fluids, i.e., the drops spread completely on the surface. It is important to note that the unmodified iron powder sample used as a control sample gave measurable contact angles with these fluids. Thus one can conclude that the wetting observed with SMS and ALG is a result of polymer adsorption on the surface.

The estimates of the different components of the surface tension show that the polar and hydrogen bonding components dominate the surface energy of SMS- and ALG-coated iron, as expected from the high charge density of these polymers. It is important to note that the energies calculated for SMS- and ALG-coated surfaces are rough estimates, obtained by using \(\theta \) values for contact angles where intermediate between sticking coefficient and particle zeta potential. One can conclude nevertheless that these are high surface energies because they are completely wetted by water. In contrast, the PAA- and CMC-coated iron surfaces gave significantly lower total surface energies.

Correlation of \(\gamma_{DNAPL} \) Values with Iron Particle Surface Energy. For the anionic homopolymers studied here, there is a clear trend between particle surface energy (Table 2) and the \(\gamma_{DNAPL} \) values obtained from transport data (Table 1). Polymers that gave low water contact angles (SMS and ALG) did not result in measurable DNAPL targeting, whereas the more hydrophobic polymers (PAA and CMC) had much higher \(\gamma_{DNAPL} \) values, with \(\gamma_{DNAPL}/\gamma_{sand} = 30 \) for both PAA and CMC. This trend is consistent with the hypothesis that targeting is driven by lowering the total interfacial energy (37, 38), because the surface tensions of PAA- and CMC-coated iron surfaces are intermediate between those of water (72.8 mN/m) and m-dichlorobenzene (53.4 mN/m) (50). The latter is in the range of many environmentally relevant DNAPL contaminants, and it thus serves as a good model for the purpose of evaluating polymers for targeting.

A trend observed with the four polymers studied here suggests that the best polymer adsorbates for the in situ remediation of DNAPLs by iron particles - i.e., those that impart high \(\gamma_{DNAPL} \) values - should be moderately hydrophobic. Ideally, one would like to identify anionic polymers or other support materials that can approach \(\gamma_{DNAPL} \) values of 1.0 while maintaining a low sticking coefficient to soil surfaces under realistic conditions of flow and ionic strength. Both the electrostatic and electrosteric properties of polymer coatings contribute to particle sticking coefficients (34, 35).

With unmodified sand columns, we found a correlation between sticking coefficient and particle zeta potential and used this to minimize \(\alpha \) for different polyelectrolytes and mixtures. The data in Table 1 show that particles with similar \(\gamma_{sand} \) values can have very different effectiveness in targeting, as expressed by the \(\gamma_{DNAPL}/\gamma_{sand} \) ratio. This ratio depends strongly on the polymer surface energy, which is determined primarily by the polymer charge density and the density of hydrogen bonding donor/acceptor groups. In principle, these are separately adjustable structural parameters of the polymer.

The best polymers should minimize particle adhesion to polar surfaces through energetically and entropically driven electrostatic interactions (repulsion of like charges, random coiling of polymer main chains and side chains) and should target DNAPL surfaces by minimizing the energy of the DNAPL/water interface.

The methods described here should be useful for obtaining estimates of nanoparticle surface energies and for correlating them with transport in contaminated and uncontaminated soils. This information can be used to design support materials for targeting of iron nanoparticles, which are more relevant to in situ remediation than the spherical microparticles that we have used as a model in this study. Because the surface energy effect should apply generally to particle adhesion, for practical applications it will also be important to quantify the extent to which soil organic matter and other low surface energy components of real soils affect the targeting of nanoiron. Experiments along these lines are currently in progress.

Acknowledgments

This work was supported by the National Science Foundation under grant CHE-0910513.

Supporting Information Available

Experimental details for materials, transport experiments, and contact angle measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

Literature Cited

18. Varadhi, S. N.; Gill, H. S.; Apollo, L. J.; Liao, K.; Blackman, R. A.; Wittman, W. K. Full-scale nanoiron injection for treatment of
groundwater contaminated with chlorinated hydrocarbons, Natural Gas Technologies 2005 Conference, Orlando, FL (February 2005).

(41) Rajagopalan, R.; Tien, C. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE J. 1976, 22, 523–33.

