
A Tutorial for Using the ADAPT Software System
For Structure-Property Relationship Studies

(Updated November 2, 2001)

The Data Set:  
At times, methods commonly employed are best explained with an example.  For those cases, a
data set of 200 compounds will be assumed.

Getting Started
A study should be done in a new ADAPT data area.  First,  create  a new directory and then
execute the ADAPT routine, AFINIT.  This will create all of the direct access binary files that
are necessary to run the ADAPT software system. There should be 33 binary files as well as an
output and an input file. 

Entering the Molecular Structures
The  HyperChem  Molecular  Modeling  package  is  used  to  draw  each  of  the  compounds.
Generally, optimizing structures in HyperChem before  FTPing them to a workstation reduces
time spent on MOPAC optimizations.  Save each compound on the hard drive as a dan###.mol
file. For example, the first compound of the study should be saved as dan001.mol. (HyperChem
Lite users:  files will be saved as dan###.hin)

Worklist Generation

After all structures have been drawn and saved on a PC, FTP them as ASCII files to the ADAPT
area directory  on  hera or  ares.  Input  the structures  into  the ADAPT area using  the routine
STRIN  (for *.mol) or  CONHIN (for *.hin). Enter the range of *.mol files (or *.hin files) to
process.  For example, using the 200-member dummy data set, enter 1/200.  When asked for the
starting DAN #, enter 1. 

CLSMKR
The  routine  CLSMKR (classmaker)  inputs  the  structures  as  members  of  a  worklist  in  the
ADAPT area.
• main to specify the main descriptor area
• inpu to input the worklist

- when prompted for how many classes to be made, enter 1
- enter the range of DAN numbers for the worklist; example - 1/200

• stor to store the worklist
• done exits the program

VERY IMPORTANT NOTE:  Once classmaker has been executed once, NEVER run it again in
that ADAPT area or it may cause severe problems with your study.
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Geometry Optimization

The script  MOPALL can be used to optimize structures with MOPAC. When prompted, enter
the  dan files  in  the worklist  to  be optimized with MOPAC.  Then,  when prompted for  the
keywords, type:    PM3 T=99999.9 EF HESS=1 MMOK GNORM=

• PM3 invokes  the  PM3  Hamiltonian  to  be  used  during  the  optimization.   We
conventionally  use  the MNDO-PM3 because is  has  been shown to  produce the most
accurate geometries.

• T is a time limit on the optimization per structure.
• EF invokes  the  Eigenvector  Following  optimization  procedure.   Optimizations

historically have been run using the BFGS quasi-Newton method,  however,  in recent
years  EF  has  been  tested  and  shown to  give  equivalently  accurate  geometries,  with
shorter  optimization  times,  and  far  fewer  errors  during  the  optimization.   Its  use  it
preferred now.

• HESS is used only in conjunction with EF.  HESS=1 invokes the construction of the
Hessian matrix prior to geometry optimization.  This speeds up the process.

• MMOK invokes  an  increased  barrier  to  rotation  correction  when  a  peptide  bond  is
encountered.

• GNORM sets the gradient norm threshold for termination of an optimization.  This is
automatically calculated and appended to the end of the keyword string above.

These jobs may take a while, therefore put the job in the background (BE CAREFUL: if you
background the script too soon, it will hang.  Give it about a minute before you background).
When the routine is finished, each structure should have a *.mol (or *.hin), *.arc. *.dat, and *.out
file.  Each structure  needs  to  satisfy  a  geometry  optimization  criterion  called  “Peter’s  Test”,
(actually each structure needs to have either converged by a BFGS optimization or an SCF field
must be achieved) which will be printed in each *.out file.  You may search for the presence of
this line by 3 methods: 

1. Physically opening each of the *.out files and seeing if each contains the phrase “Peter’s Test
is Satisfied.”  If it does, the test has been satisfied and the optimization is complete. 

2. All *.out files can be searched at once by typing  grep PETE *.out > output.  This will print
a list of all DANs in which the sequence “PETE” appears to the output file.

3. Perhaps the best alternative is to use the script file ‘pete’.  This resides in a variety of /bin
directories, so just ask around where you can get this.  One advantage of pete is that it checks
for both Peter’s Test and SCF Field Optimization and then writes all DANs that did not pass
to a file called pete.out.

To “fix” structures that do not satisfy Peter’s test, you can do three things:
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• For  some  convergence  problems,  you  can  enter  the  DMAX  keyword  when  running
mopall and set its value to a lower number.  By default, it is 0.2.  Setting it to 0.1 or 0.05
can sometimes correct the problem.

• You can make small variations to bond lengths and angles in the *.dat files.  Once these
lengths have been modified, run domop followed by the DAN file in question (without a
file extension).  Example: domop dan005. 

• The other option is to redraw the structures in HyperChem (Lite).  If you choose this
option, run SFILES and enter dele to delete the structure(s) in question.  Also, delete the
four files (.dat, .arc, .out, .mol (.hin)) for each of the DAN files in the working ADAPT
area directory as well. After the structures have been redrawn,  ftp them back into the
ADAPT area and STRIN the structures back in the same way as before.  Run MOPALL
again only on the redrawn structures and check for optimization. This process may need
to be repeated a couple of times for structurally unusual or large molecules.

• For some of the peskier error messages, consult with your favorite experienced group
member for guidance about more specific troubleshooting procedures.

Once all structures have satisfied the optimization test, use MOPOUT or AMOPOUT to write
the optimized structure coordinates into the ADAPT binary files.   When prompted,  enter all
DANs in the worklist.  Make sure you look at the amopout.error file.  If coordinates were not
replaced, try running AMOPOUT.FORCE.  This should fix your problem.  Use MOLIN (for
HyperChem users)  or  HININ (for HyperChem Lite users) to write new *.mol or *.hin files,
respectively.  When prompted, enter all DAN files in the worklist.  Next, ftp the files (in ASCII
format) back onto the PC.  Open each of the structures in HyperChem [or Lite] to make sure that
all  structures have been drawn and optimized correctly.   If  any structures are not optimized
correctly, unusual bond lengths and angles will be readily apparent.  If this occurs, redraw the
structures after deleting them with SFILES as explained above.  Once all structures are entered
correctly, descriptor generation can be performed.

NOTE: You will need the re-run the geometry optimization using the AM1 Hamiltonian at some
point as well to obtain some charge information (it is superior to PM3) for this purpose.  In
general,  do  this  up  front  before  anything  further  as  well  to  save  time  later  on.   To  avoid
confusion,  make a new directory within your  study directory called AM1 and set  up a new
ADAPT area as  described on page one of  this  tutorial.   Copy all  PM3 geometry-optimized
structures to that directory and read them in, again, as described previously. Then, run MOPALL
again, using AM1 instead of PM3 in the keyword list.  Proceed as you did for the PM3 geometry
optimization.

Training, Prediction and Cross-Validation Sets
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Before descriptor generation and model building, separate the data set into sets – approximately
80% of the compounds will be put into a training set, 10% will be put into an external prediction
set and 10% will be put into a cross-validation set.  There are two ways to do this, with SETBIN
and TSETS.

SETBIN
The program  SETBIN generates sets pseudo-randomly by binning the range of experimental
values (dependent variable) and then choosing observations from each bin.  This ensures that a
numerically representative sample of the data set is used for cross-validation and prediction.

• Create a file called depv.txt which contains the experimental values for all compounds in
the study.

• Create a file called observations.txt which contains the dan file numbers corresponding to
the  values  in  depv.txt.   A  number  of  automated  programs/scripts  (OBSERVE or
OBS.LAN.PERL) were written to handle this.

• Run SETBIN
o enter the percentage of the data to be used for the PSET
o enter the percentage of the data to be used for the CVSET
o enter a random seed

• The file setbin.out contains the sets for bookkeeping purposes.
• The file tsets.in can be used with the program TSETS to enter the sets.

o Type tsets < tsets.in

The sets will now be set up such that set 1 contains the combined TSET and CVSET compounds,
set 2 will contain only the PSET compounds, set 3 will contain only the TSET compounds, and
set 4 will contain only the CVSET compounds.

The longer, traditional way…

TSETS
The program TSETS will allow the completely random selection of compounds for formation of
sets.  

• cgs to generate computer generated random sets. When prompted, enter a random seed.
You will be prompted to enter the number of training set members; enter the data-set size
minus approximately 10%. For example, using the dummy data set of 200 members, the
TSET would have 180 members and the PSET would have 20 members..  When asked
how many sets are desired, enter 1.  Both the TSET and PSET will be stored in set #1.  

• load and enter 1 
• disp to list the compounds of both the TSET and PSET to the screen.  
• swst to switch the members of the PSET and the TSET.
• csets to change the current working set to the PSET
• wipe to erase the PSET.  
• stor and enter 2 to store this in the second storage space.  
• load set 1 again.  
• csets until you are working in the prediction set area 
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• wipe the structures.
• stor and enter 1.  

At this point, set 1 should be just your TSET and set 2 should be just your PSET.

To set up your CVSET:
• load and enter 1.  
• cgs to remove another random 10% of your structures (i.e. for the dummy example, enter

a training set of 160).
• stor and enter 3.  
• load and enter 3 and perform the same routine as in the previous paragraph – only you

will be setting up set 4 instead of set 2.

This will establish all sets that you will need for model development.  Following this procedure
you will have the following 4 sets:

Set 1:  TSET (Training set w/o prediction set)
Set 2:  PSET (Prediction set)
Set 3:  TSET (Training set w/o prediction set & cross validation set)
Set 4:  CVSET (Cross-validation set)

Setting up the Dependent Variable

Assuming you have the values for the property of interest in Excel, highlight and copy the list of
data.  Paste the values into the file input in the ADAPT area (make sure it is empty first). Execute
the routine CALC. 

CALC
• finp to read in formatted input from ‘input’ file

- when prompted to enter up to 50 numbers, enter 1 (for LAN #1)
- when asked to enter format, hit enter (for free-format)
- when asked to enter a new label, enter “depv” (you can enter anything, but it is easy to
remember that this stands for dependent variable)
- don’t enter a flag; hit enter

• done exits the program

Descriptor Generation

There are 27 ADAPT routines commonly used which calculate topological, electronic, geometric
and combination descriptors.  Because of ADAPT’s heavy-atom limitations, Phil Mosier has re-
written some topological descriptor routines to handle compounds containing up to 255 heavy
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atoms.   Descriptor calculation bypasses ADAPT and is done by reading the .mol files for all
compounds.  When running these routines, .mol files must be present in your ADAPT area.  It
would be in your best interest to consult with Phil before running these routines.  They can be
found  on  ares in  /disk1/users/pdm/ADAPT_PLUS/bin.   Descriptor  routines  that  are
ADAPT_PLUS-compatible will be marked with an asterisk(*).  You can run all or most of these:
Topological Geometric Electronic Combination
dkappa* dmgeo charge/pkachg cpsa
dmalp dmomi dsc hbpure/hbmix
dmchi* savol hleh

dmcon* shadow dcarb

dmfrag* dgrav

dmwp* geowind

ctypes* loverb

dedge*

mpolr*

mrfrac*

dsym*

destat*

eccen*

dpend*

Common directives used for ADAPT routines

DKAPPA*
The routine DKAPPA calculates the topological shape descriptors called kappa indices.  
• work to calculate descriptors for the entire worklist
• desc followed by 0 to specify all 6 kappa descriptors
• lans to specify 6 LANS to store the descriptors
• go starts the calculation
• done exits the program

DMALP
The routine DMALP generates path descriptors. 
• work to calculate descriptors for the worklist
• go starts the calculation
• stor to specify the 5 LANS for descriptor storage

When asked if storing allp descriptors is ok, answer with “y” and enter the appropriate
LANS

• done exits the program

DMCHI*
The routine DMCHI generates molecular connectivity descriptors. (Use CAPS-LOCK!)
• work to calculate descriptors for the worklist
• exec to execute the program
• stor to choose which descriptors to store
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valence (V) -- 19 LANS
• stor to choose which descriptors to store

simple (S) -- 19 LANS
• stor to choose which descriptors to store

counts (C) -- 20 LANS
• done exits the program

DMCON*
The routine DMCON generates valence-corrected molecular connectivity descriptors.  
• work to calculate descriptors for the worklist
• go to execute the program
• stor to choose which descriptors to store
• done exits the program

DMFRAG*
The routine DMFRAG generates constitutional fragment descriptors. 
• work to calculate descriptors for the worklist
• go to execute the program
• stor to choose which descriptors to store

save all descriptors with non-zero values
• done exits the program

DMWP*
The routine DMWP calculates weighted path descriptors. 
• work to calculate descriptors for the worklist
• desc to enter the descriptors to calculate; enter 0 to specify all
• lans to specify 5 LANS to store the descriptors
• go starts the computation
• done exits the program

CTYPES*
The routine CTYPES calculates the hybridization of carbon atoms based on connectivity only to
other carbon atoms.  
• work to calculate descriptors for the worklist
• desc to enter the descriptors to calculate (9 possible)
• lans to specify which 9 LANS for descriptor storage
• go starts the computation
• done exits the program

DEDGE*
The routine DEDGE generates molecular distance-to-edge descriptors.
• go to execute the program
• stor to choose which descriptors to store
• done exits the program
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MPOLR*
The routine MPOLR generates a molecular polarizability descriptor.  
• work to calculate descriptors for the worklist
• stor to store the descriptor in a LAN
• go to execute the program
• done exits the program

MRFRAC*
The routine MRFRAC generates a molar refraction descriptor. (Use CAPS-LOCK!)
This is a conversational routine:
 “Calc mol. refr. for entire worklist?”

YES
 “Now working on main descr area -- want to change?”

NO
 “Want debug output?”

NO
 “Store mref descr on disc?”

YES
 “Enter LAN No. for storage”

###
 “Return to start?”

NO

DSYM*
The routine DSYM generates a structural symmetry descriptor.
• work to calculate descriptors for the worklist
• meth to set the search method

topological
• land to specify a LAN for descriptor storage
• go to execute the program
• done exits the program

DESTAT*
The routine DESTAT calculates electrotopological state index descriptors. 
• work to calculate descriptors for the worklist
• desc to enter the descriptors to calculate (8 possible)
• lans to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

ECCEN*
The routine ECCEN generates an eccentricity descriptor. 
• go to execute the program
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• stor to store descriptor in LAN (1 possible)
• done exits the program

DPEND*
The routine DPEND generates the superpendentic index descriptors.
• go to execute the program
• stor to choose which descriptors to store in LANS (6 possible)
• done exits the program

DMGEO
The routine DMGEO calculates geometric moments of molecules (sort of)
• work to calculate descriptors for the worklist
• desc specify the descriptors to calculate; enter 0 for all
• land to specify which 6 LANS should be used for descriptor storage
• go starts the computation
• done exits the program

DMOMI
The routine DMOMI calculates moments of inertia (correctly)
• work to calculate descriptors for the worklist
• desc specify the descriptors to calculate; enter 0 for all
• land to specify which 7 LANS should be used for descriptor storage
• go starts the computation
• done exits the program

SAVOL
The routine SAVOL calculates the surface area and the volume of molecules. 
• work to calculate descriptors for the worklist
• land to specify which LANS should be used for surface area and volume descriptor storage,

respectively.
• cpop to set output; choose (4) for special output option (Clear ‘INPUT’ first!)
• calc to start the calculation
• done exits the program
• (Make sure to keep the file ‘input’)

SHADOW
The routine SHADOW calculates shadow area descriptors. 
• work to calculate descriptors for the worklist
• desc to specify the descriptors to calculate (6 possible)
• lans to specify which LANS should be used for descriptor storage
• ornt to specify the orientation of the compound; selection option 2, to orient with the first

two moments of inertia -- VERY IMPORTANT!
• go starts the computation
• done exits the program
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DGRAV
The routine DGRAV generates gravitational index descriptors (heavy atoms only or hydrogens
included). 
• work to calculate descriptors for the worklist
• desc to specify which descriptors to calculate (9 possible)
• lans to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

GEOWIND
The routine GEOWIND calculates the 3-D Weiner Index descriptor.
• wkls to calculate descriptors for the worklist
• mlan to specify which LAN should be used for descriptor storage (1 possible)
• go starts the computation
• done exits the program

LOVERB
The routine LOVERB calculates the length-to-breadth ratio descriptor
• work to calculate descriptors for the worklist
• desc to specify which descriptors to calculate; select option 3 for both
• lans to specify which 2 LANS should be used for descriptor storage
• go starts the computation
• done exits the program

PKACHG
The routine PKACHG generates atomic charge and pKa descriptors.  
• work to calculate descriptors for the worklist
• desc to enter the descriptors to calculate (5 possible)
• lans to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

** If problems arise with PKACHG, then run CHARGE.

CHARGE
The routine CHARGE generates atomic charge descriptors
• work to calculate descriptors for the worklist
• desc to enter the descriptors to calculate (4 possible)
• lans to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

** If problems arise with both PKACHG and CHARGE, then use CHARGE alternative:
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- IN THE AM1 OPTIMIZATION DIRECTORY…

- Run EXCHG2 to extract charge information from the MOPAC output files.
- Concatenate the files ‘exchg.out’ and ‘input’ to the file ‘surchg.in’.
- Copy ‘surchg.in’ to ‘input’
- Run SURCHG to create the files ‘surchg.out’ & ‘charge.desc’
- Copy ‘charge.desc’ to ‘input’ and edit file to remove all headers
- Copy ‘input’ to the PM3 optimization directory and run CALC 
- finp to read in formatted input from ‘input’; specify 3 LANS
- name the descriptors successively: qneg, qpos, & qsum
- done
- grep ‘DIPOLE’ *.arc > dipole.out
- cut -f 2 -d = dipole.out | cut -f 1 -d D > temp
- mv temp input
- Copy ‘input’ to the PM3 optimization directory and run CALC
- finp to read in formatted input from ‘input’; specify 1 LAN

- name the descriptor dipo
- done

DSC
The routine DSC calculates sigma charge descriptors
• work to calculate descriptors for the worklist
• desc to enter the descriptors to calculate (3 possible)
• land to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

HLEH
The  script  HLEH extracts  information  about  homo & lumo  energies,  electronegativity  and
hardness

- IN THE AM1 OPTIMIZATION DIRECTORY…

-     clean ‘input’
- HLEH on all compounds to make file ‘hleh.out’
- copy ‘hleh.out’ to  ‘input’
- Copy ‘input’ to the PM3 optimization directory and run CALC
- finp to read in formatted input from ‘input’; specify 4 LANS
- name the descriptors successively: homo, lumo, elec & hard
- done

DATOM
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The routine DATOM calculates the average charge on cyano and carbonyl carbons.  In addition,
it  calculates  the following descriptors  taking  into  account  only nitrogen,  oxygen,  sulfur  and
halogen atom types individually.
• load to read the information from ‘surchg.out’
• desc to enter the descriptors to calculate (22 possible)
• mlan to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

CPSA
The routine CPSA calculates charged partial surface area descriptors. 
• load to read the information from ‘surchg.out’
• desc to enter the descriptors to calculate (29 possible)
• mlan to specify which LANS should be used for descriptor storage
• go starts the computation
• done exits the program

HBPURE
The routine HBPURE calculates hydrogen bond specific descriptors for pure compounds. 

** This program is generally used for physical property studies.

• load to read the information from ‘surchg.out’
• desc to enter the descriptors to calculate (23 possible)
• lans to specify which LANS should be used for descriptor storage
• chrg to specify whether you used  charge or  pkachg for charge descriptors (if  charge or

pkachg did not work and you had to extract charges from MOPAC, tell the program you
used charge)

• go starts the computation
• done exits the program

HBMIX
The routine HBMIX calculates hydrogen bond specific descriptors for mixed compounds. 

** This program is generally used for biological activity studies.

• load to read the information from ‘surchg.out’
• desc to enter the descriptors to calculate (23 possible)
• lans to specify which LANS should be used for descriptor storage
• chrg to specify whether you used CHARGE or PKACHG for charge descriptors (if charge

or pkachg did not work and you had to extract charges from MOPAC, tell the program you
used charge)
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• go starts the computation
• done exits the program
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Initial Descriptor Pool Reduction

At some point during the calculation of electronic or combination descriptors, the ADAPT limit
of 200 LANS will be exceeded.  To circumvent this issue, an initial reduction of the descriptor
pool is performed using  DSCREEN to remove enough descriptors to allow for calculation of
rest.

DSCREEN
The  routine  DSCREEN  finds  descriptors  which  contain  identical  information  and  pairwise
correlations.
• wset to enter the working set; make sure you only use the TSET!
• itst to specify the identical test cut-off percentage, typically 90
• rcut to specify the R-value cutoff for pairwise correlations, typically 0.90 to 0.95
• depv to specify the dependent variable LAN, enter 1
• add to enter descriptor LANs, enter 2/### (where ### = last filled LAN)
• seed to enter a random seed
• go to execute the program
• done exits the program

For the initial descriptor pool reduction, only those descriptors that are identified as containing
identical information should be removed using DFILES.  This information can be obtained from
the very end of the ‘output’ file.

DFILES
The routine DFILES is a descriptor maintenance program.  Remove descriptors as follows:
• dele to remove descriptors by typing in the LAN numbers to delete
• comp to compress the ADAPT area; DO NOT reorder the descriptor numbers!
• done exits the program

Presently, the amount of descriptors that we can calculate exceeds the capabilities of DSCREEN
(especially for fairly large data sets).  Usually, once DFILES fills up, one has to run DSCREEN,
remove identical descriptors, continue calculating descriptors, and then run DSCREEN again to
get your final reduced pool.  An alternate way to perform objective feature selection is to use the
program CORREL, which resides in many group members’ bins.  CORREL can handle up to
1000 descriptors and 1000 compounds.  It works in the exact same way as DSCREEN does.

Objective Feature Selection
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The routines DSCREEN and VSDA are used for the purpose of feature selection.  The overall
pool of descriptors is reduced by three methods of objective feature selection to generate a subset
of the most information rich descriptors, without the use of the dependent variable.  

• The first is identical testing, which is used to remove any descriptor with greater than 90%
identical values.  This is important because not much useful information would be obtained
from a particular descriptor if each value of that descriptor were identical for most of the
compounds in  the data  set.   For  example,  if  each structure  had two chlorine atoms,  the
topological descriptor, number of chlorine atoms, would not be useful.  

• The second is  pairwise correlation,  which is  used to  remove one of  two descriptors  that
provide very similar information.  For example, if the electronic descriptors, charge on the
most  positive  atom  and  charge  on  the  most  negative  atom  varied  from  compound  to
compound, but the difference between their values was relatively constant across the data set,
then only one of the two would be useful since one is just a scalar of the other.  Keeping
descriptors with similar information in the final reduced pool would be redundant because the
key is to obtain different information.  

• The third attempts  to  maximize the mutual  orthogonality  among the  descriptors.   If  you
consider a descriptor as a vector, then two descriptors that contain no redundant information
should be completely orthogonal to one another.  By maximizing the orthogonality of the
descriptors, you maximize the information content while lowering the number of descriptors
in the reduced pool.

Subjective feature reduction is also applied in a QSPR study.  In this type of procedure, the
dependent variable is used to find subsets of descriptors that correlate best with the physical
property being studied.

Now that all possible descriptors have been calculated and DSCREEN has been used to reduce
the pool  following the above instructions,  a  file  named ‘dscreen.out’   which lists  all  of  the
descriptors in the final reduced pool should be present.  At this point, the first thing to examine is
the number of descriptors that have passed objective feature selection.   A major criterion of
model  development  is  that  the  ratio  of  descriptors  reduced  descriptor  pool  to  number  of
observations  (# of  compounds) be less  than or equal  to  0.6.   If  your  descriptor  pool  out  of
dscreen is too large, you may submit the descriptors to vsda.

VSDA
The routine VSDA performs feature selection by eliminating weakly orthogonal descriptors

- clean ‘output’ file before starting program
• wset to specify the TSET
• add descriptors of the reduced pool from ‘dscreen.out’ file
• load descriptor information
• plim to set projection angle limit; change to 0.01
• orth to specify a basis vector to check orthogonality against
• step to perform orthogonalization
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• clbv to clear the present basis vector

Generally, orthogonalizing against 5 basis descriptors is sufficient.  The results from each run
will be appended to the ‘output’ file.

At this point, FTP the ‘output’ file to a PC.  Determine the maximum number of descriptors
allowable using the aforementioned ratio.  Then, in Excel, make a column of each of the 5 vsda
runs using only the top maximum number of allowable descriptors.  For example, a smaller data
set may only be able to accommodate 30 descriptors.  You would make 5 columns of the 30 most
orthogonal descriptors from each run.  Then, the easiest thing to do is to sort by ascending or
descending order and find descriptors that appear in at least 4 of the 5 columns.  Once you get the
final reduced pool, remove the previous descriptors from the ‘dscreen.out’  file and copy and
paste the new ones in their place.  
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Type I  Model (Linear Feature Selection/Linear Model Development)

The programs  genlin and  annlin produce type I models by genetic algorithm and simulated
annealing, respectively.  The ‘dscreen.out’ file is set up to make a table of descriptor values to be
read into either program by typing nettab < dscreen.out. This writes a file called ‘genlin.in’. If
annlin is being used, copy  the ‘genlin.in’ file to ‘annlin.in’.

GENLIN
The routine GENLIN finds information-rich subsets of descriptors using a genetic algorithm.
• load to read in data from ‘genlin.in’; affirm that LAN 1 is the dependent variable
• seed to enter a random seed
• tval to set the internal validation T-value; enter 4
• init to initialize the population string;  enter 50 population strings,  length of string is  the

number of descriptors in the model…begin with 3 and work up.
• iter to enter the number of iterations; enter 1000.
• grun to execute the program

ANNLIN
The routine ANNLIN finds information-rich subsets of descriptors using simulated annealing.
• load to read in data from ‘annlin.in’; affirm that LAN 1 is the dependent variable
• seed to enter a random seed
• vali to set the internal validation T-value; enter 4
• desc to enter the number of descriptors to include in the model; start with 3
• arun to execute the program

** Continue running genlin or annlin while increasing the number of descriptors in the model.
Modeling up to 10-descriptors is generally sufficient.  Each successive run will be appended to
the respective *.out file. When you have finished building models, examine the *.out to find the
best size model.  The ideal size model is one with as few descriptors as possible with as low an
rms value as possible. 

** If no models are found with T-values greater than 4, then try lowering the validation value to
3.5 or 3.  If all else fails, don’t issue the vali directive at all.

** Once the size of the best descriptor subset has been determined, all ten models given by
genlin or annlin can be examined to see which is best.

The scripts  ANNVAL and ANNVALR automate the process of model searching for ANNLIN.
When you are able to confidently do everything manually with ANNLIN and GENLIN, then you
can use these scripts to make life a little easier.
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Descriptor Subset Analysis

IRA
The routine IRA (interactive regression analysis) calculates model coefficients, standard error of
the coefficients, T-values (the greater in magnitude the better), P-values (the smaller the better),
and overall F-value (the greater the value the better).
• tset 1 (stored tset #) to enter the number in which the tset is saved
• inpu 1 d1 d2 d3 d4… to input the descriptors for the model under investigation
• regr 1 all to regress all model descriptors against the dependent variable
• smod m1 to store current model in a MAN
• done exits the program

Other useful   IRA   directives  :

• add to manually add descriptors to a model
• drop to manually remove descriptors from a model
• cpop to change the printing option; defaults to no output.

Testing for Compound Outliers

DDG
The  routine  DDG (data  diagnostics  generation)  is  used  to  examine  a  saved  model  for  the
presence  of  outliers  by  various  regression  analyses.  Seven  diagnostics  are  calculated,  and  a
compound that fails four of these tests is considered an outlier.  The diagnostics include residual,
standardized  residual,  studentized  residual,  leverage  value,  DFFITS,  Cook’s  distance,  and
Mahalanobis distance.

• modl to load the stored model of descriptors
• depv to define the LAN number of the dependent variable
• wset to run diagnostics using the training set only
• rdia to compute regression diagnostics for outlier detection
• prin to print the information to the ‘output’ file
• done exits the program

View the ‘output’ file and examine the last 7 columns of values.  Values marked with asterisks
(*) are outlier values.  Generally, compounds with 4 or more asterisks are considered outliers.
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Checking for Multicollinearities

COLATE
The routine COLATE preprocesses data for use with the routine MLRA.
• wipe to clear previous stored descriptors
• real to store real numbers instead of integers
• qsar to enter QSAR mode
• add to add the model descriptors
• stor to store the list of descriptors
• done exits the program

MLRA
The routine  MLRA is  used to  check the variance inflation factor (VIF),  which tests for the
presence of multicollinearities in your model.  Generally, you would like to see r2 < 0.90 when a
descriptor is regressed against all other descriptors in the model.
• load to load collated data set; answer yes to print out the correlation matrix
• tset to specify the training set
• regr to perform the regression
• done to exit the program

Examine the ‘output’ file.  Under the column header “MCC/ADJ”, check to see that no values
are above 0.95.  If so, examine other models to see if a better scenario exists.

Linear Regression Prediction

LRPRED
The routine LRPRED performs predictions of the property for the TSET and PSET.
• modl to load model
• mdes to load descriptors associated with the model
• wset to specify the TSET
• go to perform prediction
• comp to compare predicted values to dependent variable; enter 1
• wset to specify the PSET
• go to perform prediction
• comp to compare predicted values to dependent variable; enter 1

Information will be written to the ‘output’ file.  FTP this to a PC, open it up in Excel and plot it
in Sigma Plot.
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Type II Model (Linear Feature Selection/Non-linear Model Development)

A type II study is done using the descriptors from the best linear type I model, but applying it to
a computational neural network (CNN).  The result is a linear/non-linear hybrid model.  

NETTAB
The program NETTAB is used to generate a descriptor table for use with CNNs.
• make to create a table

- Working set: Set 3 (TSET)
- Qnetin format
- Enter the descriptor LANs from Type I Model and the dependent variable last
- Name the file ‘table3’

• make to create a table
- Working set: Set 2 (PSET)
- Qnetin format
- Enter the descriptor LANs from Type I Model and the dependent variable last
- Name the file ‘table2’

• make to create a table
- Working set: Set 4 (CVSET)
- Qnetin format
- Enter the descriptor LANs from Type I Model and the dependent variable last
- Name the file ‘table4’

cat table3 table2 table4 > qnetin.pat

There are two programs that are used for Type II Model development, QNET and ANN.  QNET
uses the genetic algorithm and ANN uses simulated annealing to train the model.  Additionally,
there is a script called  QAUTO that automates multiple qnet runs starting from different seed
values.  Before any of these programs may be run, the program  QNETIN needs to be run to
create initialization files.

QNETIN
The program QNETIN creates initialization files for running ANN and QNET.
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• train to specify the training mode
- ndump every 5-10 cycles
- enter the name ‘cycle’ for weight file names
- train for 1000 cycles; up to 2500 if necessary

• layer to specify the neural net architecture; enter # of input, hidden & output neurons
• patterns to specify the TSET, PSET and CVSET; writes ‘qnet.pat’ file

- enter “n” to generate sets randomly
- when asked to enter members of the prediction set, a very easy method to follow is:

Assign the TSET, PSET and CVSET in sequential order.  That is
to  say,  assuming  a  200-member  data  set,  the  TSET  would  be
compounds 1/160, the PSET would be 161/180, and the CVSET
would be 181/200.

- the same goes when prompted to enter members of the CVSET
- the TSET will automatically be assigned

• trans to input CNN neurons to be transformed; enter the input and output neurons
• weight to enter a random seed; writes ‘qnet.wts’ file
• mode to change from interactive to non-interactive mode
• write to write the ‘qnet.in’ file
• done exits the program

QNETIN is the program that establishes the starting seed for training the model.  Because of
this, it should be run for each individual QNET or ANN run that is performed, of course using a
different seed each time.  Generally, it is a good idea to perform at least 3-5 ann runs as well as
3-5 qnet runs OR qauto.  Remember though, when writing new qnet.* files with QNETIN you
need  to  copy  the  previous  files  to  a  directory  where  a  particular  ann  or  qnet  run  will  be
performed.  All-in-all, several sets of files will be written and care must be taken to ensure that a
good file system is set up to easily keep track of where the files are being copied.  In any event,
the procedure to run QNETIN multiple times is a bit simpler if an old qnet.in file exists in the
main ADAPT area:

• useold to load information from existing ‘qnet.in’
• patterns to specify the TSET, PSET and CVSET; writes new ‘qnet.pat’ file
• weight to enter a random seed; writes new ‘qnet.wts’ file
• write to write the ‘qnet.in’ file
• done exits the program

Once all files are where they should be, ann and qnet or qauto may be run.

ANN
The program ANN uses a generalized simulated annealing optimization technique to get a good
starting set of weights and biases.  
• load to input data from ‘qnet.in’

21



• cycl to specify the number of elapsed cycles before checking for optimality; 50
• cost ; a good first approximation is to use the Type I Model TSET rms
• cvfc to enter the cross-validation factor; enter 0.4 or 0.5.
• seed to enter a random seed
• arun to execute the program

** Depending on the architecture, this may take a minute or so.  Put in the background.

** Examine the ‘ann.out’ file.  The farthest right column of values should be the CVSET rms
error.   Find  the  lowest  error  value  and note  the  ‘cycle’  file.   Copy  that  ‘cycle.wts’  file  to
‘qnet.wts’.  Also, edit the ‘qnet.in’ file and change the word “TRAIN” to “TEST”.  Run QNET.
This will take no more than 5-10 seconds.  The file ‘qnet.out’ will be written which contains the
prediction values and rms errors of the TSET, CVSET and PSET.

QAUTO
The program QAUTO performs multiple qnet training runs using different starting seeds.

- Enter the number of training sessions you would like run
- Specify the number of elapsed cycles before checking for optimality; 50

- Enter the first seed
** This takes a while; place it in the background.
** After the program is finished, view the ‘qauto.out’ file.  This contains information for the best
run with each differing seed.  It contains: the seed used, the training session in which the optimal
CVSET error was found, and the ‘cycle’ file which contains the optimum weights.  Take note of
the seed, and then run QNETIN to input that seed as the starting weight.  Run QNET again and
view the ‘qnet.out’  file.   This  will  contain similar  information as  seen in  the ‘ann.out’  file.
Again, look for the minimum CVSET rms error and then test the network as detailed above for
ann.

If one so chooses, instead of running QAUTO which automates multiple qnet runs, QNET itself
can be run a few times.  This is merely done be doing the same TRAINing and TESTing as
detailed above for QAUTO.

Various group members that automate the process of Type II methodology wrote several scripts.
In particular,  using a committee of  several  ann runs to average network output  has  proved
beneficial.   When you are  able  to  confidently  do  everything manually  with  QNETIN,  ANN,
QNET, or QAUTO, then you can use these scripts to make life a little easier.  When that time
comes, find your favorite group member to discuss possibilities for the automation process.

22



Type III Model (Non-linear Feature Selection/Non-linear Model Development)

Type III models are the most computationally intensive of the models to develop.  The main
difference  between  Type  III  and  the  Type  I  and  Type  II  models  is  that  non-linear  feature
selection is used to find information-rich subsets of descriptors.  This is done by submitting the
reduced pool of descriptors from dscreen and vsda to GENDES or GENDESP.

- Edit the ‘dscreen.out’ file to look something like this:

make

⇐  specifies to make a table
3

⇐  specify the TSET only (w/o PSET & CVSET)
2

⇐  specify gendes(p) format
d1

⇐  descriptor 1
d2

⇐  descriptor 2
d3

⇐  descriptor 3
d4

⇐  descriptor 4
.

and so on
.

and so on
.

and so on (of reduced pool ONLY!)

gendes(p).in
⇐  specify the file name
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done

⇐  specify to exit the program

Then, nettab < dscreen.out   ⇒  writes ‘gendes(p).in’

GENDES
• load to read information from gendes.in

- Do not enter any prediction or cross-validation set members; hit enter
- No exclusion set members; hit enter
- Do no use a previous population; enter “n”

• qnet to set network parameters
- set network layers; most likely 3
- specify # of input, hidden and output neurons
- train for about 1000 cycles

• ann to initialize simulated annealing parameters
- enter the cost from your best ann or qnet run
- enter the minimum cycle to check for optimality; enter 50
- enter the cv factor; usually 0.4 or 0.5

• gene to initialize genetic algorithm parameters
- enter the  population strings; enter anywhere from 40 to 50
- set the genetic algorithm iterations; a 1000 is sufficient
• go executes the program

** Place job in the background (CTRL-Z, type bg) and nice it. (renice 15 PID#)

** The completed job will write ‘gendes.out’.  This will contain the 10 best models found and
their corresponding cost functions. Evaluate these models the exact same way as in a Type II
Model, using ANN and QNET or QAUTO.

GENDESP
• load to read information from gendesp.in

- enter the fraction left out for the CVSET; enter 0.2
- Do not enter any prediction or cross-validation set members; hit enter
- Do no use a previous population; enter “n”

• qnet to set network parameters
- set network layers; most likely 3
- specify # of input, hidden and output neurons
- train for about 1000 cycles

• ann to initialize simulated annealing parameters
- enter the cost from your best ann or qnet run
- enter the minimum cycle to check for optimality; enter 50
- enter the cv factor; usually 0.4 or 0.5
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• gene to initialize genetic algorithm parameters
- enter the  population strings; enter anywhere from 40 to 50
- set the genetic algorithm iterations; a 1000 is sufficient
• go executes the program

** Place job in the background (CTRL-Z, type bg) and nice it. (renice 15 PID#)

** The completed job will write ‘gendesp.out’.  This will contain the 10 best models found and
their corresponding cost functions. Evaluate these models the exact same way as in a Type II
Model, using ANN and QNET or QAUTO.

A Note on Type III Models  

For long jobs, examining the gendes(p).out file periodically to see if the rms error has converged
or not can help conserve CPU time.  If you wish to stop a gendes(p) job gracefully (with the best
models printed to the output file), delete the gendes(p).run file and let the job terminate itself.
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Monte Carlo Randomization Experiments

A further way to prove the validity of our models is to perform Monte Carlo randomization
experiments.  The dependent variable is randomly scrambled and used during training to develop
models  using  the  methods  described  previously.   If  the  models  developed  using  the  actual
dependent variable are true structure-property relationships, then models built with the scrambled
dependent variable should be very poor in terms of the rms error and the correlation coefficient
(R2).   This is because no relationship should exist between the structures and the scrambled
dependent variable.  Good models found with the scrambled dependent variable is evidence that
the original model may have contained chance correlations between descriptors and the property
or activity of interest.

− clean ‘output’
− In DFILES, make a simple table of the dependent variable LAN for all the compounds in

the data set.
o tabl to make a table of descriptor values, S for simple table, 0 for entire work list
o enter the LAN ### containing the dependent variable

− A sequential list of dependent variable values for the data set will be written to the file
‘output’.

− Edit ‘output’ and remove all lines not containing depv values (i.e. remove the ADAPT
output headers in the file and extra spaces at the end of the file).

− Copy ‘output’ to ‘scramble.in’.
− Run SCRAMBLE.  This program resides in various group members’ bin directories.
− This should produce a ‘scramble.out’ file containing your scrambled dependent variables.
− In your ADAPT area, copy ‘scramble.out’ to ‘input’.
− Run calc, finp, etc… to enter your random dependent variable into dfiles.  Name the LAN

accordingly.

Type I Randomization Experiments

While performing Monte Carlo experiments,  good housekeeping is  recommended so original
files for your study are not lost or copied over.

− Copy ‘dscreen.out’ file (generated during Type I model formation) to your ADAPT area.
− Edit ‘dscreen.out’ to replace the dependent variable found at the end of the sequential

list of LANs for the reduced pool with the LAN containing the scrambled depv.
− Issue the command, nettab < dscreen.out.
− Input (‘annlin.in’ or ‘genlin.in’)  file  is  made which has all  the descriptor values  for

compounds  in  your  training  set  with  the  random dependent  variable  being  the  last
descriptor.

− With this new input file, type I modeling can be performed as previously described to
find the best subset of descriptors that correlates structure to the scrambled depv.

o Note:  When choosing subset size in GENLIN, ANNLIN or ANNVALR, only
use the  subset  size  that  gave  you the  best  results  with  your  real  depv.   For
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example, if your best type I model happened to be a five-descriptor model, only
explore five-descriptor  subsets  with your  scrambled depv.   Furthermore,  you
want validation to be off when modeling with the scrambled depv (i.e. when
issuing valid command in ANNLIN, type 0 for no validation).

− After running  GENLIN,  ANNLIN or  ANNVALR, look at the output (‘annlin.out’ or
‘genlin.out’) file to find the best subset of descriptors.

− From there use IRA to enter your model into ADAPT.  Bypass DDG,  COLATE, and
MLRA.  Just run LRPRED to obtain your predictions for your training and prediction
sets.

− Make a plot of calculated vs. experimental values for your data set.  Type I Monte Carlo
plots should appear like a shot-gun was used to blast your compounds on the plot or
their should be a cluster of compounds right near the average-line.

Type III Randomization Experiments

− Copy ‘dscreen.out’ file (used for generation of ‘gendes(p).in’ file) to your ADAPT area.
− Edit ‘dscreen.out’ to replace the dependent variable found at the end of the sequential list

of LANs for the reduced pool with the LAN containing the scrambled depv.
− nettab < dscreen.out
− ‘gendes(p).in’ file is made as before except your scrambled dependent variable being the

last descriptor.
− With this new ‘gendes(p).in’ file, run GENDES(P) with the same CNN architecture used

to find your best Type III model with the real depv.  For example, if you used a 10-3-1
CNN architecture in searching your reduced descriptor pool to find optimal models, use
that same architecture for the randomization experiment.

o Note:  After GENDES(P) is done running, best models will be listed at the end
of the gendes(p).out file.  Examine best model using Type II methodology used
above with one exception.  Only test the CNN architecture that gave the best
model in the original QSAR study.  For example, if the best model was found
using a 10-6-1 CNN architecture,  use that  same architecture when examining
your best model found with your scrambled depv.

− Make a plot of calculated vs. experimental values for your data set.  Type III Monte
Carlo plots should cluster your compounds right near the average-line.
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