Asymmetric Hydrogenation of Pyridines: Enantioselective Synthesis of Nipecotic Acid Derivatives

Aiwen Lei,*[a] Mao Chen,[a] Minsheng He,[b] and Xumu Zhang*,[a,b]

Keywords: Enantioselectivity / Hydrogenation / Homogeneous Catalysis / Rh / Pyridine

An asymmetric hydrogenation process of 3-substituted pyridine derivatives has been developed with the use of a Rh-TangPhos complex as the catalyst. The whole process consists of an efficient partial hydrogenation of nicotinate and a subsequent highly enantioselective, Rh-catalyzed, homogeneous hydrogenation. A series of chiral nipecotic acid derivatives have been synthesized.

As readily available heteroaromatic compounds, pyridine and its derivatives are very attractive materials for the synthesis of N-containing building blocks in pharmaceuticals and in agrochemicals (Scheme 1). The development of an efficient method for the production of enantiomerically pure piperidine derivatives can be of significant value. For example, enantiomerically pure nipecotic acid ($113.70/g, Aldrich) is 2000 times more expensive than its pyridine analog, nicotinic acid. Although the direct asymmetric hydrogenation of nicotinic acid to form enantiomerically enriched nipecotic acid [Scheme 1, Equation (1)] would have practical industrial applications, no such process has been successfully developed so far. Herein we report our preliminary results on the asymmetric hydrogenation of substituted pyridines. We describe a two-step method as an alternative solution for the preparation of nipecotic acid derivatives. First, partial hydrogenation of nicotinate provides the enantiomerically enriched nipecotic acid [Scheme 1, Equation (1)] would have practical industrial applications. Second, the homogenous chiral catalysts are used to reduce the remaining double bond in high enantioselectivity [Scheme 1, Equation (2)]. In fact, a similar approach has been reported, and chiral modifiers were involved in the heterogeneous catalytic system. However, the enantioselectivities (<24% ee) were low.[26,27]

Partial hydrogenation of ethyl nicotinate under heterogeneous catalytic conditions was previously reported.[28–30] We carried out the reaction on different scales with EtOH as the solvent, and 10% Pd/C as the catalyst. The H2 pressure, which ranged from 30–300 psi, did not seem to be critical for this transformation. The reaction can be easily scaled-up to a practical industrial process while the work-up procedure is also very convenient. The possible impurities of the reaction are the unreacted starting materials and over-reduced ethyl nipecotide, which can be simply removed by the passage of the product through a short acidic silica gel column. The partial hydrogenation product is vindologous amide 2, which is stabilized by the conjugation of

[a] College of Chemistry and Molecular Sciences, Wuhan University
Wuhan, 430072, P. R. China
Fax: +86-27-6875-4672
E-mail: aiwenlei@whu.edu.cn
[b] Department of Chemistry, The Pennsylvania State University
University Park, Pennsylvania 16802, USA
Fax: +1-814-863-8403
E-mail: xumu@chem.psu.edu

Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.
SHORT COMMUNICATION

A. Lei, M. Chen, M. He, X. Zhang

Scheme 1.

The lone pair of electrons on the nitrogen atom with the C=C bond and the carbonyl group. This conjugation may be the reason why hydrogenation can be stopped at this stage under the above conditions.

Acylation of intermediate 2 to generate compounds with various protecting groups on nitrogen was performed (Scheme 2). Vinylogous amide 2 was deprotonated with nBuLi (1.6 M in hexane) at −78 °C, and then quenched by the addition of electrophilic reagents, such as acyl chloride or -anhydride. Acetic, benzoic and trimethylacetic amides 3a, 3b, and 3f were obtained in high yields. The same synthetic method can also be applied to prepare methoxy carbamate 3c, benzyloxy carbamate (Cbz) 3d, and tert-butylcarbonylamine (Boc) 3e.

The partial hydrogenation strategy could also be applied to 3-acetylpyridine and 3-benzoylpyridine. Unsaturated ketones 6a and 6b were obtained in high yields from the corresponding vinylogous amides 5; this reaction was carried out in pyridine at 100 °C (Scheme 3).

Scheme 2. Syntheses of N-acyl and N-arbamate vinylogous amides 3a–f.

The search for catalysts and reaction conditions are important tasks in asymmetric hydrogenation. Our lab has recently discovered some efficient hydrogenation catalysts, Ru-TunePhos, Rh-Binapine, and Rh-TangPhos, for the reduction of olefins and ketones.[31–36] As a result, these catalytic systems were used for the hydrogenation of substrates 2, 3, 5, and 6. Although low reactivities were generally found for the hydrogenation of substrates 2 and 5, the hydrogenation of substrate 3a proceeded smoothly with some chiral Rh catalysts. Rh complexes with electron-donating ligands showed promise in the resolution of this problem. The Rh-binapine system provided hydrogenation product 7a in 55.5% ee, albeit in low conversion (Table 1, Entry 3). When the Rh-TangPhos catalyst was used, much better results were observed. For example, when the hydrogenation was performed in THF under 30 psi of hydrogen pressure for twenty-four hours, the hydrogenation product was obtained in 88.5% ee and in 74% conversion (Table 1, Entry 4). Further results showed that the enantioselectivity was very sensitive to the solvent. When methanol and toluene were chosen as the solvent, no conversion was observed (Table 1, Entries 5 and 8). Methylene chloride and THF were found to be appropriate solvents for the hydrogenation reaction. The enantioselectivity slightly decreased when ethyl acetate and ethanol were used as solvents. In addition, the ee value seemed to be insensitive to the hydrogen pressure and the temperature. When the reaction was carried out with a hydrogen pressure of 1500 psi, 84.7% ee and 100% conversion were realized. Chiral Ru catalysts with BINAP or (R)-C4-TunePhos ligands were also employed in this hydrogenation process.
Asymmetric Hydrogenation of Pyridines: Synthesis of Nipecotic Acid Derivatives

Table 1. Optimized reaction conditions for the asymmetric hydrogenation of N-acetyl vinlylogous amide 3a.

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solv.</th>
<th>temp</th>
<th>H2 (psi)</th>
<th>ee (%)</th>
<th>conv. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Ru-(R)-C2-TunePhos]</td>
<td>THF</td>
<td>25</td>
<td>30</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>[Ru-(R)-C2-TunePhos]</td>
<td>EtOH</td>
<td>80</td>
<td>1500</td>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>3</td>
<td>[Rh(NBD)(Binapine)]SbF6</td>
<td>THF</td>
<td>25</td>
<td>30</td>
<td>55.5</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>THF</td>
<td>25</td>
<td>30</td>
<td>88.5</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>MeOH</td>
<td>25</td>
<td>1500</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>EtOH</td>
<td>80</td>
<td>1500</td>
<td>70</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>EtOAc</td>
<td>25</td>
<td>1500</td>
<td>77.7</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>Toluene</td>
<td>25</td>
<td>1500</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>CH2Cl2</td>
<td>25</td>
<td>1500</td>
<td>85.7</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>[Rh(NBD)(TangPhos)]SbF6</td>
<td>THF</td>
<td>25</td>
<td>1500</td>
<td>84.7</td>
<td>100</td>
</tr>
</tbody>
</table>

[a] The R configuration was assigned by comparing with (S)-nipecotic acid ethyl ester. Enantiomeric excesses (ee) were determined by chiral HPLC. See Experimental Section for details.

reaction and low reactivities were observed under various conditions (Table 1, Entries 1 and 2).

Substrates with different N-protecting groups were also subjected to the hydrogenation reaction and different enantioselectivities were observed as shown in Table 2. When carbamates were employed as the protecting groups, enantioselectivities were high, especially with the Boc protecting group. When the acetoxy protecting group was introduced, the increased steric hindrance of the alkyl groups led to decreased ee values.

Substrates 6 were also subjected to hydrogenation with the Rh-TangPhos catalyst. Excellent chemoselectivities and good enantioselectivities were observed. The carbon-carbon double bond (100% chemoselectivity) was selectively

Table 2. Asymmetric hydrogenation of N-acyl vinlylogous amides 3b-3f.[a]

<table>
<thead>
<tr>
<th>R</th>
<th>7b</th>
<th>R</th>
<th>7f</th>
<th>R</th>
<th>7c</th>
<th>R</th>
<th>7d</th>
<th>R</th>
<th>7e[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>7b</td>
<td>Ph</td>
<td>7f</td>
<td>Ph</td>
<td>7c</td>
<td>Ph</td>
<td>7d</td>
<td>Ph</td>
<td>7e[a]</td>
</tr>
<tr>
<td>65.5% ee</td>
<td>47.7% ee</td>
<td>91% ee</td>
<td>90% ee</td>
<td>> 99% ee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[a] The (R) configuration was assigned by comparison with (S)-nipecotic acid ethyl ester. Enantiomeric excesses (ee) were determined by chiral HPLC. See Experimental Section for details. [b] The conversion of 3e to 7e is 29% and determined by NMR spectroscopy.
reduced while the carbonyl group remained intact. Hydrogenation products \(8a\) and \(8b\) were obtained in 69.1% ee and 65.5% ee, respectively (Scheme 4). The obtained hydrogenated products are functionalized piperidines, which are important building blocks for organic synthesis.

Partial hydrogenation of ethyl nicotinate in the presence of 1.2 equiv. of \(\text{Ac}_2\text{O}\) with THF as the solvent was investigated, and we are pleased to find that the reaction produced \(3a\) in high yield and excellent selectivity. Further experimentation revealed that this reaction could be carried out without the use of any solvent in a 100 g-scale of the nicotinate substrate. The hydrogenation was performed at 80 °C under 1500 psi of hydrogen pressure for 72 h. After the hydrogen was released, the reaction mixture was passed through a short silica gel column to remove the catalyst. The \((R)\) configuration was assigned by comparison with \((S)\)-nipecotic acid ethyl ester. Enantiomeric excesses were determined by HPLC with Chiralcel AD and OJ-H columns (1 mL/min, hexane/\(i\)PrOH = 95:5).

Supporting Information (see footnote on the first page of this article): General procedures for the preparation of \(N\)-carbamate and \(N\)-acyl vinylogous amides as well as their asymmetric hydrogenation reactions. Characterization information of represented compounds.

Acknowledgments

We would like to acknowledge the Start-up Fund of Green Catalysis Institute from Wuhan University, National Natural Science Foundation of China (20502020), and X. Z. thanks the NIH and NSF grants.

Experimental Section

General Procedure for the Asymmetric Hydrogenation of Pyridine Derivatives: To a solution of the vinylogous amide substrate (0.2 mmol) in dichloromethane (3.0 mL) in a glove box was added \([\text{Rh}(S,S,R,R)-\text{TangPhos}]\text{[SbF}_6\text{]}(0.004 \text{ mmol})\). The hydrogenation was performed at 80 °C under 1500 psi of hydrogen pressure for 72 h. After the hydrogen was released, the reaction mixture was passed through a short silica gel column to remove the catalyst. The \((R)\) configuration was assigned by comparison with \((S)\)-nipecotic acid ethyl ester. Enantiomeric excesses were determined by HPLC with Chiralcel AD and OJ-H columns (1 mL/min, hexane/\(i\)PrOH = 95:5).

Supporting Information (see footnote on the first page of this article): General procedures for the preparation of \(N\)-carbamate and \(N\)-acyl vinylogous amides as well as their asymmetric hydrogenation reactions. Characterization information of represented compounds.

References

Asymmetric Hydrogenation of Pyridines: Synthesis of Nipecotic Acid Derivatives

Received: June 29, 2006
Published Online: August 10, 2006